Abstract
We summarize Jang's architecture of employing an adaptive network and the Kalman filtering algorithm to identify the system parameters. Given a surface structure, the adaptively adjusted inference system performs well on a number of interpolation problems. We generalize Jang's basic model so that it can be used to solve classification problems by employing parameterized t-norms. We also enhance the model to include weights of importance so that feature selection becomes a component of the modeling scheme. Next, we discuss two ways of identifying system structures based on Jang's architecture: the top-down approach, and the bottom-up approach. We introduce a data structure, called a fuzzy binary boxtree, to organize rules so that the rule base can be matched against input signals with logarithmic efficiency. To preserve the advantage of parallel processing assumed in fuzzy rule-based inference systems, we give a parallel algorithm for pattern matching with a linear speedup. Moreover, as we consider the communication and storage cost of an interpolation model. We propose a rule combination mechanism to build a simplified version of the original rule base according to a given focus set. This scheme can be used in various situations of pattern representation or data compression, such as in image coding or in hierarchical pattern recognition

This publication has 22 references indexed in Scilit: