Counting faces of randomly-projected polytopes when the projection radically lowers dimension
Abstract
This paper develops asymptotic methods to count faces of random high-dimensional polytopes. Beyond its intrinsic interest, our conclusions have surprising implications - in statistics, probability, information theory, and signal processing - with potential impacts in practical subjects like medical imaging and digital communications. Three such implications concern: convex hulls of Gaussian point clouds, signal recovery from random projections, and how many gross errors can be efficiently corrected from Gaussian error correcting codes.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: