Abstract
Observations of wind profiles within the tropical cyclone boundary layer until recently have been quite rare. However, the recent spate of observations from the GPS dropsonde have confirmed that a low-level wind speed maximum is a common feature of the tropical cyclone boundary layer. In Part I, a mechanism for producing such a maximum was proposed, whereby strong inward advection of angular momentum generates the supergradient flow. The processes that maintain the necessary inflow against the outward acceleration due to gradient wind imbalance were identified as being (i) vertical diffusion, (ii) vertical advection, and (iii) horizontal advection, and a linear analytical model of the boundary layer flow in a translating tropical cyclone was presented and used to diagnose the properties of the jet and the near-surface flow. A significant shortcoming was that the jet was too weak, which was argued to be due to the neglect of vertical advection. Here, a high-resolution, dry, hydrostatic, numerical ... Abstract Observations of wind profiles within the tropical cyclone boundary layer until recently have been quite rare. However, the recent spate of observations from the GPS dropsonde have confirmed that a low-level wind speed maximum is a common feature of the tropical cyclone boundary layer. In Part I, a mechanism for producing such a maximum was proposed, whereby strong inward advection of angular momentum generates the supergradient flow. The processes that maintain the necessary inflow against the outward acceleration due to gradient wind imbalance were identified as being (i) vertical diffusion, (ii) vertical advection, and (iii) horizontal advection, and a linear analytical model of the boundary layer flow in a translating tropical cyclone was presented and used to diagnose the properties of the jet and the near-surface flow. A significant shortcoming was that the jet was too weak, which was argued to be due to the neglect of vertical advection. Here, a high-resolution, dry, hydrostatic, numerical ...