Effect of phase fluctuations on the single-particle properties of underdoped cuprates

Abstract
We study the effect of order parameter phase fluctuations on the single-particle properties of fermions in the underdoped cuprate superconductors using a phenomenological low-energy theory. We identify the fermion-phase field coupling as the Doppler shift of the quasiparticle spectrum induced by the fluctuating superfluid velocity and we calculate the effect of these fluctuations on the fermion self-energy. We show that the vortex pair unbinding near the superconducting transition causes a significant broadening in the fermion spectral function, producing a pseudogaplike feature. We also discuss the specific heat and show that the phase fluctuation effect is visible due to the short coherence length.