PHARMACOKINETICS OF CITALOPRAM IN RELATION TO GENETIC POLYMORPHISM OF CYP2C19
- 1 October 2003
- journal article
- research article
- Published by Elsevier in Drug Metabolism and Disposition
- Vol. 31 (10) , 1255-1259
- https://doi.org/10.1124/dmd.31.10.1255
Abstract
The study was designed to define the contribution of cytochrome P450 2C19 (CYP2C19) and cytochrome P450 3A4 (CYP3A4) to citalopram N-demethylation and to evaluate the relationship between the disposition of citalopram and CYP2C19 genotype. A single oral 40-mg dose of citalopram was administered to eight extensive metabolizers and five poor metabolizers recruited from 77 healthy Chinese volunteers whose genotypes and phenotypes were predetermined. The plasma concentrations of citalopram and desmethylcitalopram were determined by high-performance liquid chromatography. It was found that the genotype of CYP2C19 had a significant effect on the N-demethylation of citalopram. Poor metabolizers with m1 mutation had higher area under the plasma concentration versus time curve (AUC0→∞) values than did extensive metabolizers. Terminal elimination half-life (t1/2) values of citalopram in poor metabolizers were significantly higher than the values in extensive metabolizers who were either homozygous or heterozygous with CYP2C19*1. The oral clearance (CLoral) of citalopram in poor metabolizers was significantly lower than that of extensive metabolizers. The AUC0→∞ and maximum plasma concentration (Cmax) of desmethylcitalopram in poor metabolizers were significantly lower than the values of extensive metabolizers. The results show that CYP3A4 is not the major enzyme in the N-demethylation of citalopram among extensive metabolizers. The polymorphism of CYP2C19 plays an important role in the N- demethylation of citalopram in vivo. The extensive metabolizers and poor metabolizers of CYP2C19 had significant difference in disposition of citalopram in vivo.Keywords
This publication has 22 references indexed in Scilit:
- The induction effect of rifampicin on activity of mephenytoin 4′‐hydroxylase related to M1 mutation of CYP2C19 and gene doseBritish Journal of Clinical Pharmacology, 1998
- Simplified high-performance liquid chromatographic method for the determination of citalopram and desmethylcitalopram in serum without interference from commonly used psychotropic drugs and their metabolitesJournal of Chromatography B: Biomedical Sciences and Applications, 1996
- The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: A population study*Clinical Pharmacology & Therapeutics, 1995
- Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoinClinical Pharmacology & Therapeutics, 1992
- Debrisoquine/Sparteine Hydroxylation Genotype and Phenotype: Analysis of Common Mutations and Alleles ofCYP2D6in a European PopulationDNA and Cell Biology, 1991
- CitalopramDrugs, 1991
- Molecular genetics of the P-450 superfamilyPharmacology & Therapeutics, 1990
- Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland ChineseClinical Pharmacology & Therapeutics, 1989
- Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in manEuropean Journal of Clinical Pharmacology, 1984
- Citalopram — Pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activityProgress in Neuro-Psychopharmacology and Biological Psychiatry, 1982