Optimizing the Substrate Specificity of a Group I Intron Ribozyme
- 25 February 1999
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 38 (11) , 3426-3432
- https://doi.org/10.1021/bi982688m
Abstract
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymena thermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.Keywords
This publication has 3 references indexed in Scilit:
- MECHANISTIC ASPECTS OF ENZYMATIC CATALYSIS: Lessons from Comparison of RNA and Protein EnzymesAnnual Review of Biochemistry, 1997
- Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozymeBiochemistry, 1992
- An axial binding site in the Tetrahymena precursor RNAJournal of Molecular Biology, 1991