Abstract
The recently constructed two dimensional Sen connection is applied in the problem of quasi-local energy-momentum in general relativity. First it is shown that, because of one of the two 2 dimensional Sen--Witten identities, Penrose's quasi-local charge integral can be expressed as a Nester--Witten integral.Then, to find the appropriate spinor propagation laws to the Nester--Witten integral, all the possible first order linear differential operators that can be constructed only from the irreducible chiral parts of the Sen operator alone are determined and examined. It is only the holomorphy or anti-holomorphy operator that can define acceptable propagation laws. The 2 dimensional Sen connection thus naturally defines a quasi-local energy-momentum, which is precisely that of Dougan and Mason. Then provided the dominant energy condition holds and the 2-sphere S is convex we show that the next statements are equivalent: i. the quasi-local mass (energy-momentum) associated with S is zero; ii.the Cauchy development $D(\Sigma)$ is a pp-wave geometry with pure radiation ($D(\Sigma)$ is flat), where $\Sigma$ is a spacelike hypersurface whose boundary is S; iii. there exist a Sen--constant spinor field (two spinor fields) on S. Thus the pp-wave Cauchy developments can be characterized by the geometry of a two rather than a three dimensional submanifold.

This publication has 0 references indexed in Scilit: