Effect of Destruction of the Dorsal Anterior Hypothalamus on Follicle-Stimulating Hormone Secretion in the Rat*

Abstract
The role of the paraventricular nucleus-dorsal anterior hypothalamus (PVN-DAHA) in the control of anterior pituitary gland secretion of FSH and LH in castrated male and female rats was examined. Bilateral radiofrequency lesions of the PVN-DAHA in chronically ovariectomized (OVX) rats lowered plasma FSH levels by 33% (P < 0.005) compared to values in unoperated and sham-operated control rats; plasma LH concentrations were unaltered. RIA [radioimmunoassay] of median eminence (ME) LHRH concentrations in these animals revealed no differences among the 3 experimental groups. Other categories of diencephalic destruction did not result in this pattern of selectively reduced FSH release. Bilateral radiofrequency destruction of the PVN-DAHA also attenuated by 50% (P < 0.025-P < 0.005) the progesterone-induced surge of FSH in estrogen-primed OVX rats. Progesterone-induced LH release was unaffected by PVN-DAHA lesions. Other lesion categories failed to show the same result. Bilateral ablation of the PVN-DAHA in male rats resulted in a selective diminution of the postcastration rise of plasma FSH beginning 48 h postcastration (P < 0.05-P < 0.005) and persisting for 14 days (P < 0.005) after orchidectomy, thus revealing the time course and permanence of this procedure on plasma FSH levels. The postcastration rise of plasma LH levels was not affected by PVN-DAHA lesions. The concentration of ME LHRH was the same among orchidectomized male rats whether they bore PVN-DAHA lesions, sham lesions, or no lesions. Destruction of the PVN-DAHA was found to reduce significantly the elevation of plasma FSH, but not LH, in the OVX rat and the estrogen-progesterone-stimulated OVX rat. PVN-DAHA lesions also attenuated the postcastration rise of FSH, but not that of LH, in the male. The failure of lesions of the PVN-DAHA to alter ME LHRH concentrations in the face of decreased FSH release does not prove that LHRH release is totally unaffected by this procedure. This finding is consistent with the concept that diminished FSH secretion could be the result of a deficiency of a hypothalamic releasing factor (FSH-releasing factor?) other than that of the LHRH decapeptide.