Rectification of currents activated by nicotinic acetylcholine receptors in rat sympathetic ganglion neurones.
- 1 August 1990
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 427 (1) , 625-655
- https://doi.org/10.1113/jphysiol.1990.sp018191
Abstract
1. The inward rectification of the whole-cell current evoked by acetylcholine (ACh) and other nicotinic agonists in rat sympathetic ganglion neurones has been studied using patch-clamp recording techniques. The selective nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) (20 microM) induced an average peak current of -367 pA at -50 mV but no detectable outward current at +50 mV. Similar observations were made with ACh and carbachol. 2. The current-voltage relation of the whole-cell response induced by DMPP was linear in the negative voltage range; however, there was no detectable outward current in the voltage range 0 to about +70 mV. Above +70 mV an outward current became clearly detectable. Rapid depolarizing jumps in the holding potential failed to reveal any rapidly decaying outward current. 3. The rectification was not alleviated by changing the main permeant cation, by removal of divalent cations from the intracellular or extracellular solutions or by altering the pH buffer in the extracellular solution from HEPES to Tris. 4. Intracellular magnesium ions can block the channel. This effect increases with depolarization, but dissociation outwards (i.e. permeation by Mg2+) appears to relieve the block at more extreme positive potentials. This effect alone, or in combination with the voltage dependence of the burst length, is unlikely to be able to account for the whole-cell rectification in intact cells, much less that seen in cells perfused with Mg2(+)-free intracellular medium. 5. When the reversal potential was shifted to approximately -50 mV (by the use of impermeant cations) nicotinic agonists produced small outward currents in the membrane potential range -20 to +10 mV while shifting it to about +40 mV produced small inward currents in the potential range 0 to +20 mV. The rectification therefore appears to be independent of the direction of current flow and is maximum at a potential positive to 0 mV. 6. At positive potentials the receptors desensitized much less than at negative potentials in the continued presence of agonist. Thus, exposure of the cells to a steady application of 30 microM-ACh produced no detectable response if the cell was at a positive potential, but when the cell was stepped to a negative potential in the continued presence of ACh (at a time when much of the ACh current would be expected to have desensitized), ACh induced a large inward current. The onset of the ACh current had a time constant of 10 ms. It then decayed with a time constant of 790 ms as desensitization developed.(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 51 references indexed in Scilit:
- Membrane potential modulates the activation of GABA-gated channelsJournal of Neurophysiology, 1988
- Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions.Proceedings of the National Academy of Sciences, 1987
- Acetylcholine dose-response relation and the effect of cesium ions in the rat adrenal chromaffin cell under voltage clampPflügers Archiv - European Journal of Physiology, 1987
- Fast excitatory postsynaptic currents in voltage-clamped mammalian sympathetic ganglion neuronesJournal of the Autonomic Nervous System, 1979
- An analysis of the inhibitory post‐synaptic current in the voltage‐clamped crayfish muscle.The Journal of Physiology, 1979
- Characteristics of fast excitatory postsynaptic current in bullfrog sympathetic ganglion cellsPflügers Archiv - European Journal of Physiology, 1979
- A comparison of current‐voltage relations for full and partial agonists.The Journal of Physiology, 1978
- Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques: a study of neurally evoked postsynaptic currents and of voltage-jump relaxations.The Journal of general physiology, 1977
- Effect of acetylcholine on postjunctional membrane permeability in eel electroplaque.The Journal of general physiology, 1977
- A quantitative description of end‐plate currentsThe Journal of Physiology, 1972