Abstract
A general model for aerobic yeast growth in batch culture is presented. It is based on the concept that the aerobic metabolism of all yeasts is determined by the relative sizes of the transport rate of sugar into the cell and the transport rate of respiratory intermediates into the mitochondrion. If the rate of sugar uptake rate exceeds the rate of transport of respiratory intermediates into the mitochondrion (as in Saccharomyces cerevisiae, S. uvarum, and S. pombe), the metabolism exhibits the features of ethanol excretion and limited specific oxygen uptake rate. If the rate of transport of respiratory intermediates into the mitochondrion is of the same order as the transport of sugar into the cell (as in Candida utilis), the metabolism is characterized by little or no ethanol excretion and a much higher specific oxygen uptake rate. Batch data from an extensive range of yeast and carbon sources is used to illustrate the use of this model. The ability of this model to fit such an extensive range of experimental data suggests that it can be used as a generalized model for aerobic yeast growth.