Quasi-Equatorial Gravitational Lensing by Spinning Black Holes in the Strong Field Limit
Preprint
- 17 February 2003
Abstract
Spherically symmetric black holes produce, by strong field lensing, two infinite series of relativistic images, formed by light rays winding around the black hole at distances comparable to the gravitational radius. In this paper, we address the relevance of the black hole spin for the strong field lensing phenomenology, focusing on trajectories close to the equatorial plane for simplicity. In this approximation, we derive a two-dimensional lens equation and formulae for the position and the magnification of the relativistic images in the strong field limit. The most outstanding effect is the generation of a non trivial caustic structure. Caustics drift away from the optical axis and acquire finite extension. For a high enough black hole spin, depending on the source extension, we can practically observe only one image rather than two infinite series of relativistic images. In this regime, additional non equatorial images may play an important role in the phenomenology.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: