Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells

Abstract
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.