The Dynamic Interaction Between Matrix Metalloproteinase Activity and Adverse Myocardial Remodeling
- 1 January 2004
- journal article
- review article
- Published by Springer Nature in Heart Failure Reviews
- Vol. 9 (1) , 33-42
- https://doi.org/10.1023/b:hrev.0000011392.03037.7e
Abstract
The process of cardiac remodeling in response to cardiac injury and/or persistent elevations in wall stress generally relates to the progressive changes that occur in ventricular chamber dimensions and the various components of the myocardium, in particular the cardiomyocytes and the extracellular matrix. Volume overload, pressure overload or myocardial injury produces a sustained abnormal elevation in myocardial wall stress which initiates cardiac remodeling that frequently results in ventricular decompensation and heart failure. Regardless of the inciting cause, there appear to be three distinct phases to this process. In the initial phase, fibrillar collagen is partially degraded secondary to increased matrix metalloproteinase (MMP) activity. Following this, there is a chronic compensatory phase during which MMP activity and collagen concentration return to normal while cardiomyocyte size continues to progressively increase. The final phase is attained once the compensatory hypertrophic mechanisms are exhausted and is characterized by elevated MMP activity, marked ventricular dilatation and prominent fibrosis. Details of this progressive, dynamic remodeling process and its effect on ventricular function during chronic volume overload, chronic pressure overload and following myocardial infarction will be the focus of this article.Keywords
This publication has 60 references indexed in Scilit:
- Effects of Matrix Metalloproteinase Inhibition on Ventricular Remodeling Due to Volume OverloadCirculation, 2002
- Leptin serum levels in cachectic heart failure patients: Relationship with tumor necrosis factor-α systemInternational Journal of Cardiology, 2000
- Tumor Necrosis Factor- α at Acute Myocardial Infarction in Rats andÈEffects on Cardiac FibroblastsJournal of Molecular and Cellular Cardiology, 1999
- Resident Cardiac Mast Cells Degranulate and Release Preformed TNF-α, Initiating the Cytokine Cascade in Experimental Canine Myocardial Ischemia/ReperfusionCirculation, 1998
- Mechanism of Bradykinin-Induced Histamine Release from Rat Peritoneal Mast Cells.Biological & Pharmaceutical Bulletin, 1996
- Transmural changes in mast cell density in rat heart after infarct induction in vivoThe Journal of Pathology, 1995
- Tumour necrosis factor and cachexia: a current perspectiveSurgical Oncology, 1994
- Interstitial Collagen is Increased in the Non-infarcted Human Myocardium After Myocardial InfarctionJournal of Molecular and Cellular Cardiology, 1993
- Atrial peptides induce mast cell histamine releasePeptides, 1990
- Left ventricular radius to wall thickness ratioThe American Journal of Cardiology, 1979