Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse
- 1 September 2005
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 20 (9) , 1659-1668
- https://doi.org/10.1359/jbmr.050503
Abstract
Stromal/osteoblastic cell expression of RANKL and M-CSF regulates osteoclastogenesis. We show that aging is accompanied by increased RANKL and M-CSF expression, increased stromal/osteoblastic cell-induced osteoclastogenesis, and expansion of the osteoclast precursor pool. These changes correlate with age-related alterations in the relationship between osteoblasts and osteoclasts in cancellous bone. Introduction: Bone mass is maintained through a balance between osteoblast and osteoclast activity. Osteoblasts regulate the number and activity of osteoclasts through expression of RANKL, osteoprotegerin (OPG), and macrophage-colony stimulation factor (M-CSF). To determine whether age-related changes in stromal/osteoblastic cell expression of RANKL, OPG, and M-CSF are associated with stimulation of osteoclastogenesis and whether the osteoclast precursor pool changes with age, we studied cultures of stromal/osteoblastic cells and osteoclast precursor cells from animals of different ages and examined how aging influences bone cell populations in vivo. Materials and Methods: Osteoclast precursors from male C57BL/6 mice of 6 weeks (young), 6 months (adult), and 24 months (old) of age were either co-cultured with stromal/osteoblastic cells from young, adult, or old mice or treated with M-CSF, RANKL, and/or OPG. Osteoclast precursor pool size was determined by fluorescence-activated cell sorting (FACS), and osteoclast formation was assessed by measuring the number of multinucleated TRACP+ cells and pit formation. The levels of mRNA for RANKL, M-CSF, and OPG were determined by quantitative RT-PCR, and transcription was measured by PCR-based run-on assays. Osteoblast and osteoclast numbers in bone were measured by histomorphometry. Results: Osteoclast formation increased dramatically when stromal/osteoblastic cells from old compared with young donors were used to induce osteoclastogenesis. Regardless of the origin of the stromal/osteoblastic cells, the number of osteoclasts formed from the nonadherent population of cells increased with increasing age. Stromal/osteoblastic cell expression of RANKL and M-CSF increased, whereas OPG decreased with aging. Exogenously administered RANKL and M-CSF increased, dose-dependently, osteoclast formation from all donors, but the response was greater in cells from old donors. Osteoclast formation in vitro positively, and the ratio of osteoblasts to osteoclasts in vivo negatively, correlated with the ratio of RANKL to OPG expression in stromal/osteoblastic cells for all ages. The effects of RANKL-induced osteoclastogenesis in vitro were blocked by OPG, suggesting a causal relationship between RANKL expression and osteoclast-inducing potential. The osteoclast precursor pool and expression of RANK and c-fms increased with age. Conclusions: Our results show that aging significantly increases stromal/osteoblastic cell-induced osteoclastogenesis, promotes expansion of the osteoclast precursor pool and alters the relationship between osteoblasts and osteoclasts in cancellous bone.Keywords
This publication has 29 references indexed in Scilit:
- Changes in Bone Structure and Mass With Advancing Age in the Male C57BL/6J MouseJournal of Bone and Mineral Research, 2002
- The Ligand for Osteoprotegerin (OPGL) Directly Activates Mature OsteoclastsThe Journal of cell biology, 1999
- OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesisNature, 1999
- Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and ActivationCell, 1998
- Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKLProceedings of the National Academy of Sciences, 1998
- Identity of Osteoclastogenesis Inhibitory Factor (OCIF) and Osteoprotegerin (OPG): A Mechanism by which OPG/OCIF Inhibits Osteoclastogenesisin Vitro1Endocrinology, 1998
- Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cellsGene, 1997
- Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone DensityCell, 1997
- Structural changes in aging bone: Osteopenia in the proximal femurs of female miceBone, 1991
- Age-related bone loss in lumbar vertebrae of CW-1 female mice: A histomorphometric studyCalcified Tissue International, 1989