Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions
Abstract
Application of Bardeen's tunneling theory to magnetic tunnel junctions having a general degree of atomic disorder reveals the close relationship between magneto-conduction and voltage-driven pseudo-torque, as well as the thickness dependence of tunnel-polarization factors. Among the results: 1) The torque generally varies as sin theta at constant applied voltage. 2) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. 3) At finite applied voltage, this relation predicts significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even when the magnetoconductance is greatly diminished. 4) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin dependence of a state-weighting factor proportional to the sum over general state index of evaluated within the (e.g. vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. 5) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral auto-correllation scales.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: