A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics
- 1 October 1996
- journal article
- Published by IOP Publishing in Smart Materials and Structures
- Vol. 5 (5) , 615-627
- https://doi.org/10.1088/0964-1726/5/5/010
Abstract
A finite element for planar beams with active constrained layer (ACL) damping treatments is presented. Features of this non-shear locking element include a time-domain viscoelastic material model, and the ability to readily accommodate segmented (i.e. non-continuous) constraining layers. These features are potentially important in active control applications: the frequency-dependent stiffness and damping of the viscoelastic material directly affects system modal frequencies and damping; the high local damping of the viscoelastic layer can result in complex vibration modes and differences in the relative phase of vibration between points; and segmentation, an effective means of increasing passive damping in long- wavelength vibration modes, affords multiple control inputs and improved performance in an active constrained layer application. The anelastic displacement fields (ADF) method is used to implement the viscoelastic material model, enabling the straightforward development of time-domain finite elements. The performance of the finite element is verified through several sample modal analyses, including proportional-derivative control based on discrete strain sensing. Because of phasing associated with mode shapes, control using a single continuous ACL can be destabilizing. A segmented ACL is more robust than the continuous treatment, in that the damping of modes at least up to the number of independent patches is increased by control action.Keywords
This publication has 15 references indexed in Scilit:
- Performance of an active control system with piezoelectric actuatorsPublished by Elsevier ,2003
- Finite element modeling of frequency dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shearInternational Journal of Solids and Structures, 1996
- Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement FieldsJournal of Vibration and Acoustics, 1995
- Optimum Design and Control of Active Constrained Layer DampingJournal of Mechanical Design, 1995
- Use of active constrained-layer damping for controlling resonant vibrationSmart Materials and Structures, 1995
- Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material propertiesInternational Journal of Solids and Structures, 1992
- Fractional order state equations for the control of viscoelasticallydamped structuresJournal of Guidance, Control, and Dynamics, 1991
- Dynamics of Viscoelastic Structures—A Time-Domain, Finite Element FormulationJournal of Applied Mechanics, 1985
- Fractional calculus in the transient analysis of viscoelastically damped structuresAIAA Journal, 1985
- Fractional calculus - A different approach to the analysis of viscoelastically damped structuresAIAA Journal, 1983