Abstract
Summary Over a period of six months, from July to December, 1938, an investigation on microseismic waves has been carried out in the Department of Geophysics of St. Louis University. Four electromagnetic seismographs, specially designed for recording microseisms, were installed in the city of St. Louis in the form of a triangular network. Two of these were E-W components, one at the St. Louis University Gymnasium and the other 6.4 km. due west at Washington University. The other two were arranged as N-S components, one at the St. Louis University Gymnasium and one 6.3 km. due south at Maryville College. The speed of the photographic paper was 60 mm/min., and time signals were recorded automatically and simultaneously on each paper from the same clock every minute and at shorter intervals from a special pendulum and “tickler” combination by means of telephone wires. The results have demonstrated beyond doubt that microseismic waves are traveling and not stationary waves. The same waves have been identified at each one of the stations of the network, and also at Florissant, 21.8 km. away from St. Louis University. The speed of microseismic waves at St. Louis was determined from several storms of microseisms and it was found to be 2.67±0.03 km/sec. The direction of microseisms was also established for most of the storms and it was found that about 80 per cent of incoming microseisms at St. Louis were from the northeast quadrant during the interval from July to December, 1938. No microseisms were recorded from the south, west, or southwest. The period of the waves varied between 3.5 and 7.5 sec. The average period was about 5.4 sec. The microseismic wave length was therefore of the order of 14¼ km. A study of the nature of microseismic waves from the three Galitzin-Wilip components of the Florissant station reveals in the waves many of the characteristics of the Rayleigh waves; that is, the particles in the passage of microseismic waves move in elliptical orbits of somewhat larger vertical axis and with retrograde motion. A comparison carried over a period of more than a year between microseisms and microbarometric oscillations recorded by specially designed microbarographs showed no direct relationship between the two phenomena in wave form, group form, period, or duration of storms. The source of microseisms is to be found not over the land, but rather out over the surface of the ocean. The amplitudes of microseisms depend only on the intensity and widespread character of barometric lows traveling over the ocean. Several correlations between the two phenomena seem to make this conclusion rather evident. Special emphasis is laid on the fact that all the determined directions of incoming microseisms at St. Louis point to a deep barometric low over the ocean. The period of microseisms seems to be a function of the distance between the station and the source of microseisms. The exact mechanism by which barometric lows over the ocean water result in the production of microseisms needs further investigation. Large microseisms have been produced without any indication of surf near the coasts, or with winds blowing from the land toward the ocean.

This publication has 0 references indexed in Scilit: