Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients
- 1 July 1986
- journal article
- Published by Elsevier in Computer Methods in Applied Mechanics and Engineering
- Vol. 56 (3) , 251-264
- https://doi.org/10.1016/0045-7825(86)90041-1
Abstract
No abstract availableThis publication has 16 references indexed in Scilit:
- Minimal eigenvalue of large sparse matrices by an efficient reverse power-conjugate gradient schemeComputer Methods in Applied Mechanics and Engineering, 1983
- The eigenvalue problem for symmetric matrices of high orderComputer Methods in Applied Mechanics and Engineering, 1974
- The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matricesJournal of Computational Physics, 1973
- Berechnung von Eigenwerten und Eigenvektoren normaler Matrizenpaare durch Ritz‐IterationZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1973
- Optimal gradient minimization scheme for finite element eigenproblemsJournal of Sound and Vibration, 1972
- An iterative procedure for the calculation of the lowest real eigenvalue and eigenvector of a nonsymmetric matrixJournal of Computational Physics, 1970
- Gradient methods for finite-element eigenproblems.AIAA Journal, 1969
- New iterative methods for solution of the eigenproblemNumerische Mathematik, 1966
- Solutions of Ax = gamma Bx1Journal of Research of the National Bureau of Standards, 1951
- A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrixJournal of Research of the National Bureau of Standards, 1951