Dynamics and topology of idiotypic networks

Abstract
Jerne's idiotypic network was previously modelled using simple proliferation dynamics and a homogeneous tree as a connection structure. The present paper studies analytically and numerically the genericity of the previous results when the network connection structure is randomized, e.g. with loops and varying connection intensities. The main feature of the dynamics is the existence of different localized attractors that can be interpreted in terms of vaccination and tolerance. This feature is preserved when loops are added to the network, with a few exceptions concerning some regular lattices. Localized attractors might be destroyed by the introduction of a continuous distribution of connection intensities. We conclude by discussing possible modifications of the elementary model that preserve localization of the attractors and functionality of the network.