Reduction Theorem for Connections and its Application to the Problem of Isotropy and Holonomy Groups of a Riemannian Manifold
- 1 October 1955
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 9, 57-66
- https://doi.org/10.1017/s002776300002328x
Abstract
The present paper constitutes, together with [13], a continuation of the study of differential geometry of homogeneous spaces which we started in [11]. Our main result states that if the homogeneous holonomy group of a complete Riemannian manifold is contained in the linear isotropy group at each point, then the Riemannian manifold is symmetric. The converse is of course one of the well known properties of a Riemannian symmetric space [4]. Besides the results already sketched in [12], we add a few applications of the main theorem.Keywords
This publication has 11 references indexed in Scilit:
- Studies on Riemannian Homogeneous SpacesNagoya Mathematical Journal, 1955
- Invariant Affine Connections on Homogeneous SpacesAmerican Journal of Mathematics, 1954
- Des groupes linéaires irréductibles et la géomérie différentielleProceedings of the Japan Academy, Series A, Mathematical Sciences, 1954
- A theorem on holonomyTransactions of the American Mathematical Society, 1953
- Sur la réductibilité d'un espace de RiemannCommentarii Mathematici Helvetici, 1952
- The Topology of Fibre Bundles. (PMS-14)Published by Walter de Gruyter GmbH ,1951
- Theory of Lie Groups (PMS-8)Published by Walter de Gruyter GmbH ,1946
- Vector fields and Ricci curvatureBulletin of the American Mathematical Society, 1946
- Sur une classe remarquable d'espaces de RiemannBulletin de la Société Mathématiques de France, 1926
- Les groupes d'holonomie des espaces généralisésActa Mathematica, 1926