Application of Wiener model predictive control (WMPC) to a pH neutralization experiment

Abstract
PH control is recognized as an industrially important, yet notoriously difficult control problem. Wiener models, consisting of a linear dynamic element followed in series by a static nonlinear element, are considered to be ideal for representing this and several other nonlinear processes. Wiener models require little more effort in development than a standard linear step-response model, yet offer superior characterization of systems with highly nonlinear gains. These models may be incorporated into model predictive control (MPC) schemes in a unique way which effectively removes the nonlinearity from the control problem, preserving many of the favorable properties of linear MPC. In this paper, Wiener model predictive control (WMPC) is evaluated experimentally, and also compared with benchmark proportional integral derivative (PID) and linear MPC strategies, considering the effects of output constraints and modeling error.