Sierra Nevada-Great Basin boundary zone: Earthquake hazard related to structure, active tectonic processes, and anomalous patterns of earthquake occurrence
- 1 October 1980
- journal article
- Published by Seismological Society of America (SSA) in Bulletin of the Seismological Society of America
- Vol. 70 (5) , 1557-1572
- https://doi.org/10.1785/bssa0700051557
Abstract
Precise epicentral determinations based on local network recordings are compared with mapped faults and volcanic features in the western Great Basin. This region is structurally and seismically complex, and seismogenic processes vary within it. In the area north of the rupture zone of the 1872 Owens Valley earthquake, dispersed clusters of epicenters agree with a shatter zone of faults that extend the 1872 breaks to the north and northwest. An area of frequent earthquake swarms east of Mono Lake is characterized by northeast-striking faults and a crustal low-velocity zone; seismicity in this area appears to be related to volcanic processes that produced thick Pliocene basalt flows in the Adobe Hills and minor historic activity in Mono Lake. In the Garfield Hills between Walker Lake and the Excelsior Mountains, there is some clustering of epicenters along a north-trending zone that does not correlate with major Cenozoic structures. In an area west of Walker Lake, low seismicity supports a previous suggestion by Gilbert and Reynolds (1973) that deformation in that area has been primarily by folding and not by faulting. To the north, clusters of earthquakes are observed at both ends of a 70-km-long fault zone that forms the eastern boundary of the Sierra Nevada from Markleeville to Reno. Clusters of events also appear at both ends of the Dog Valley Fault in the Sierra west of Reno, and at Virginia City to the east. Fault-plane solutions for the belt in which major earthquakes have occurred in Nevada during the historic period (from Pleasant Valley in the north to the Excelsior Mountains on the California-Nevada Border) correspond to normaloblique slip and are similar to that found by Romney (1957) for the 1954 Fairview Peak shock. However, mechanisms of recent moderate earthquakes within the SNGBZ are related to right- or left-lateral slip, respectively, on nearly vertical, northwest-, or northeast-striking planes. These mechanisms are explained by a block faulting model of the SNGBZ in which the main fault segments trend north, have normal-oblique slip, and are offset or terminated by northwest-trending strike-slip faults. This is supported by the observation that seismicity during the period of observation has been concentrated at places where major faults terminate or intersect. Anomalous temporal variations, consisting of a general decrease in seismicity in the southern part of the SNGBZ from October 1977 to September 1978, followed by a burst of moderate earthquakes that has continued for more than 18 months, is suggestive of a pattern that several authors have identified as precursory to large earthquakes. The 1977 to 1979 variations are particularly noteworthy because they occurred over the entire SNGBZ, indicating a regional rather than local cause for the observed changes.Keywords
This publication has 28 references indexed in Scilit:
- Deep structure under Yellowstone National Park U.S.A.: A continental “hot spot”Tectonophysics, 1979
- Abnormal P-Wave Delays in The Geysers—Clear Lake Geothermal Area, CaliforniaScience, 1979
- Low-velocity zone under long valley as determined from teleseismic eventsJournal of Geophysical Research, 1976
- Microearthquakes in and near Long Valley, CaliforniaJournal of Geophysical Research, 1976
- Distribution of seismicity before large strike slip and thrust-type earthquakesJournal of Geophysical Research, 1975
- Earthquake distribution and mechanism of faulting in the Rainbow Mountain-Dixie Valley-Fairview Peak Area, central NevadaPublished by American Geophysical Union (AGU) ,1971
- Pwave residuals as a function of azimuth: 1. ObservationsJournal of Geophysical Research, 1966
- Basaltic Cone Suggests Constructional Origin of Some GuyotsScience, 1964
- Crustal structure from San Francisco, California, to Eureka, Nevada, from seismic-refraction measurementsJournal of Geophysical Research, 1963
- The Earthquake of December 20, 1932, at Cedar Mountain, Nevada and Its Bearing on the Genesis of Basin Range StructureThe Journal of Geology, 1934