Size Separation of Circulatory DNA in Maternal Plasma Permits Ready Detection of Fetal DNA Polymorphisms

Abstract
Background: Analysis of fetal DNA in maternal plasma has recently been introduced as a new method for noninvasive prenatal diagnosis, particularly for the analysis of fetal genetic traits, which are absent from the maternal genome, e.g., RHD or Y-chromosome-specific sequences. To date, the analysis of other fetal genetic traits has been more problematic because of the overwhelming presence of maternal DNA sequences in the circulation. We examined whether different biochemical properties can be discerned between fetal and maternal circulatory DNA. Methods: Plasma DNA was examined by agarose gel electrophoresis. The fractions of fetal and maternal DNA in size-fractionated fragments were assayed by real-time PCR. The determination of paternally and maternally inherited fetal genetic traits was examined by use of highly polymorphic chromosome-21-specific microsatellite markers. Results: Size fractionation of circulatory DNA indicated that the major portion of cell-free fetal DNA had an approximate molecular size of Conclusions: Circulatory fetal DNA can be enriched by size selection of fragment sizes less than ∼0.3kb. Such selection permits easier analysis of both paternally and maternally inherited DNA polymorphisms.