Discrete quantum mechanics

Abstract
A discrete model for quantum mechanics is presented. First a discrete phase space S is formed by coupling vertices and edges of a graph. The dynamics is developed by introducing paths or discrete trajectories in S. An amplitude function is used to compute probabilities of quantum events and a discrete Feynman path integral is presented. Many of the results can be formulated in terms of transition probabilities and unitary operators on a Hilbert space l2(S).

This publication has 10 references indexed in Scilit: