Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases

Abstract
The IpaH family of Shigella virulence factors are E3 ubiquitin ligases that may target host proteins. Structural and functional characterization of IpaH1.4 and IpaH9.8 reveal a unique C-terminal catalytic domain that seems to have HECT-like E3 ligase activity. Together with an accompanying publication from Zhu et al., these data suggest that the IpaH proteins constitute a new category of ubiquitin ligases. IpaH proteins are E3 ubiquitin ligases delivered by the type III secretion apparatus into host cells upon infection of humans by the Gram-negative pathogen Shigella flexneri. These proteins comprise a variable leucine-rich repeat–containing N-terminal domain and a conserved C-terminal domain harboring an invariant cysteine residue that is crucial for activity. IpaH homologs are encoded by diverse animal and plant pathogens. Here we demonstrate that the IpaH C-terminal domain carries the catalytic activity for ubiquitin transfer and that the N-terminal domain carries the substrate specificity. The structure of the IpaH C-terminal domain, determined to 2.65-Å resolution, represents an all-helical fold bearing no resemblance to previously defined E3 ubiquitin ligases. The conserved and essential cysteine residue lies on a flexible, surface-exposed loop surrounded by conserved acidic residues, two of which are crucial for IpaH activity.