Structural and magnetoelectric properties of MFe2O4-PZT (M=Ni,Co) and (La)x(Ca,Sr)1-x - PZT multilayers

Abstract
Thick film layered magnetoelectric composites consisting of ferromagnetic and ferroelectric phases have been synthesized with nickel ferrite (NFO), cobalt ferrite (CFO), La0.7Sr0.3MnO3 (LSMO), or La0.7Ca0.3MnO3 (LCMO) and lead zirconate titanate (PZT). Structural, magnetic and ferromagnetic resonance characterization shows evidence for defect free ferrites, but deterioration of manganite parameters. The resistivity and dielectric constants are smaller than expected values. The magnetoelectric effect (ME) is stronger in ferrite-PZT than in manganite-PZT. The ME voltage coefficient aE at room temperature is the highest in NFO-PZT and the smallest for LCMO-PZT. The transverse ME effect is an order of magnitude stronger than the longitudinal effect. The magnitude of aE correlates well with magnetic permeability for the ferrites.

This publication has 0 references indexed in Scilit: