Electronic structure of the N-Vcenter in diamond: Experiments

Abstract
Quantum-beat spectroscopy has been used to observe excited states of the N-V center in diamond. For the 1.945-eV optical transition, direct evidence is presented for the existence of GHz-scale fine structure, together with a much larger 46-cm1 level splitting in the E state. An interference effect observed in transient four-wave-mixing response is explained with a polarization selection rule involving Zeeman coherence among magnetic sublevels. Also, detailed dephasing measurements versus temperature and wavelength have identified the decay mechanisms operative among the various states. A comparison of these results with ab initio calculations of excited electronic structure and interactions based on several multielectron models supports the conclusion that the N-V center is a neutral, two-electron center governed by a strong Jahn-Teller effect and weak spin-spin interactions. © 1996 The American Physical Society.

This publication has 28 references indexed in Scilit: