Abstract
The multi-resolution Fourier domain parflow (MR-FDPF) is a new indoor propagation prediction model based on a finite difference computation of the electrical field. The predictions made in two dimensions are fast: simulation lasts 6s for an 80/spl times/30 meters building floor at the resolution of 10 centimeters. At a coarser resolution, processing time can be reduced up to 0.6s. Prediction performance of our method is presented in this paper. A least-square calibration process based on signal power measurements is used to determine the propagation indices and attenuation factors of the constitutive materials of the building. The coverage predictions made with the calibrated MR-FDPF are challenged to real measurements and a mean squared error about 5dB is obtained.

This publication has 6 references indexed in Scilit: