Multicomplementary operators via finite Fourier transform

Abstract
A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of dimension d, whenever d is a power of a prime. We discuss a simple construction of d+1 disjoint classes (each one having d-1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.

This publication has 0 references indexed in Scilit: