Joint Iterative Detection and Decoding in the Presence of Phase Noise and Frequency Offset

Abstract
We present a new algorithm for joint detection and decoding of iteratively decodable codes transmitted over channels affected by a time-varying phase noise (PN) and a constant frequency offset. The proposed algorithm is obtained as an application of the sum-product algorithm to the factor graph representing the joint a posteriori distribution of the information symbols and the channel parameters given the channel output. The resulting algorithm employs the soft-output information on the coded symbols provided by the decoder and performs forward-backward recursions, taking into account the joint probability distribution of phase and frequency offset. We present simulation results for high-order coded modulation schemes based on low-density parity-check codes and serially concatenated convolutional codes, showing that, despite its low complexity, the algorithm is able to cope with a strong PN and a significant uncompensated frequency offset, thus avoiding the use of complicated data-aided frequency-estimation schemes operating on a known preamble. The robustness of the algorithm in the presence of a time-varying frequency offset is also discussed

This publication has 26 references indexed in Scilit: