Anesthetic Potency of Two Novel Synthetic Polyhydric Alkanols Longer than the n-Alkanol Cutoff: Evidence for a Bilayer-Mediated Mechanism of Anesthesia?

Abstract
The polyhydroxyalkanes 1,6,11,16-hexadecanetetraol (1) and 2,7,12,17-octadecanetetraol (2) were synthesized utilizing the thiophene ring as a scaffold to affix the hydroxyalkyl chains by lithiation of the acidic alpha-hydrogens and subsequent desulfurization. Both compounds exhibited significant anesthetic potency, individually and in additivity studies with hexanol, using immobility in tadpoles as the phenotypic endpoint. These results, which contradict a protein-binding mechanism in which cutoff results from steric hindrance, are consistent with recent predictions of a membrane-mediated mechanism involving the lateral pressure profile.