Multiscale Smoothing Error Models

Abstract
A class of multiscale stochastic models based on scale-recursive dynamics on trees has recently been introduced. These models are interesting because they can be used to represent a broad class of physical phenomena and because they lead to efficient algorithms for estimation and likelihood calculation. In this paper, we provide a complete statistical characterization of the error associated with smoothed estimates of the multiscale stochastic processes described by these models. In particular, we show that the smoothing error is itself a multiscale stochastic process with parameters which can be explicitly calculated.

This publication has 0 references indexed in Scilit: