Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy
- 1 March 1998
- journal article
- Published by Optica Publishing Group in Applied Optics
- Vol. 37 (7) , 1256-1267
- https://doi.org/10.1364/ao.37.001256
Abstract
We measured the optical properties on samples of rat liver tissue before and after laser-induced thermotherapy performed in vivo with Nd:YAG laser irradiation. This made it possible to monitor not only the influence of coagulation on the scattering properties but also the influence of damages to vessels and heat-induced damage to blood on the absorption properties. An experimental integrating-sphere arrangement was modified to allow the determination of the g factor and the absorption and scattering coefficients versus the wavelength in the 600–1050-nm spectral region, with the use of a spectrometer and a CCD camera. The results show a relative decrease in the g factor of on average 21 ± 7% over the entire spectral range following thermotherapy, and a corresponding relative increase in the scattering and absorption coefficients of 23 ± 8% and 200 ± 100%, respectively. An increase of on average 200 ± 80% was consequently found for the reduced scattering coefficient. The cause of these changes in terms of the Mie-equivalent average radius of tissue scatterers as well as of the distribution and biochemistry of tissue absorbers was analyzed, utilizing the information yielded by the g factor and the spectral shapes of the reduced scattering and absorption coefficients. These results were correlated with the alterations in the ultrastructure found in the histological evaluation. The average radius of tissue scattering centers, determined by using either the g factors calculated on the basis of Mie theory or the spectral shape of reduced scattering coefficients calculated on the Mie theory, was estimated to be 21–32% lower in treated than in untreated liver samples. The Mie-equivalent average radii of scattering centers in untreated liver tissue deduced by the two methods corresponded well and were found to be 0.31 and 0.29 μm, respectively, yielding particle sizes in the same range as the size of a mitochondrion.Keywords
This publication has 23 references indexed in Scilit:
- Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantomsApplied Optics, 1997
- Dynamics of tissue optics during laser heating of turbid mediaApplied Optics, 1996
- Measurements of the optical properties of tissue in conjunction with photodynamic therapyApplied Optics, 1995
- Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liverLasers in Surgery and Medicine, 1994
- Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aortaApplied Optics, 1993
- Changes in the optical properties (at 6328 nm) of slowly heated myocardiumApplied Optics, 1993
- Pascal program to perform Mie calculationsOptical Engineering, 1993
- Two integrating spheres with an intervening scattering sampleJournal of the Optical Society of America A, 1992
- Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive indexApplied Optics, 1989