Poisson perturbations
Open Access
- 1 January 1999
- journal article
- research article
- Published by EDP Sciences in ESAIM: Probability and Statistics
- Vol. 3, 131-150
- https://doi.org/10.1051/ps:1999106
Abstract
Stein's method is used to prove approximations in total variation to the distributions of integer valued random variables by (possibly signed) compound Poisson measures. For sums of independent random variables, the results obtained are very explicit, and improve upon earlier work of Kruopis (1983) and Čekanavičius (1997); coupling methods are used to derive concrete expressions for the error bounds. An example is given to illustrate the potential for application to sums of dependent random variables. On utilise la méthode de Stein pour approximer, par rapport à la variation totale, la distribution d'une variable aléatoire aux valeurs entières par une mesure (éventuellement signée) de Poisson composée. Pour les sommes de variables aléatoires indépendantes, on obtient des résultats très explicites ; les estimations de la précision de l'approximation, construites à l'aide de la méthode de “coupling”, sont plus exactes que celles de Kruopis (1983) et de Čekanivičius (1997). Un exemple sert à illustrer le potentiel de la méthode envers les sommes de variables aléatoires dépendantes.Keywords
This publication has 8 references indexed in Scilit:
- The number of components in a logarithmic combinatorial structureThe Annals of Applied Probability, 2000
- Compound Poisson Approximation for Dissociated Random Variables via Stein's MethodCombinatorics, Probability and Computing, 1999
- Compound Poisson approximation in total variationStochastic Processes and their Applications, 1999
- Solving the Stein Equation in compound poisson approximationAdvances in Applied Probability, 1998
- Asymptotic Expansions in the Exponent: a Compound Poisson ApproachAdvances in Applied Probability, 1997
- Poisson Approximation and the Chen-Stein MethodStatistical Science, 1990
- Precision of approximation of the generalized binomial distribution by convolutions of Poisson measuresLithuanian Mathematical Journal, 1986
- Approximation of Binomial Distributions by Infinitely Divisible OnesTheory of Probability and Its Applications, 1984