Inhibitory effects of a super pulsed carbon dioxide laser at low energy density on periodontopathic bacteria and lipopolysaccharide in vitro
- 25 August 2005
- journal article
- Published by Wiley in Journal of Periodontal Research
- Vol. 40 (6) , 469-473
- https://doi.org/10.1111/j.1600-0765.2005.00826.x
Abstract
Previous studies have described the effect of irradiation by a carbon dioxide (CO2) laser at high energy density on oral bacteria, and various side-effects have also been observed. However, no published studies have examined the effect of irradiation by a CO2 laser at low energy density on oral bacteria. The purpose of this study was to investigate the effects of super pulsed CO2 laser irradiation on periodontopathic bacteria and lipopolysaccharide (LPS). Bacterial suspensions of two species of periodontopathic bacteria received laser irradiation at energy densities of 0-12.5 J/cm2. The suspensions were then spread over agar plates and incubated anaerobically. The bactericidal effects were evaluated based on colony formation. Samples of LPS were laser-irradiated at energy densities of 0-12.5 J/cm2. The biological activity was measured, and LPS was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The irradiation at low energy densities of 7.5 and 12.5 J/cm2 killed more than 99.9 and 99.999% of Porphyromonas gingivalis and more than 99% of Actinobacillus actinomycetemcomitans was sterilized by the irradiation at 7.5 J/cm2. LPS biological activity was significantly decreased by laser irradiation at energy densities of more than 7.5 J/cm2 (p < 0.05), and the components of LPS analyzed by SDS-PAGE was diminished non-specifically. The results indicate that CO2 laser irradiation at low power is capable of bactericidal effect on periodontopathic bacteria and decreasing LPS activity.Keywords
This publication has 29 references indexed in Scilit:
- Residual Thermal Damage Resulting from Pulsed and Scanned Resurfacing LasersDermatologic Surgery, 1999
- Effect of a Carbon Dioxide Laser on Periodontally Involved Root SurfacesThe Journal of Periodontology, 1999
- The effects of C02, Nd: YAG and Er: YAG lasers with and without surface coolant on tooth root surfacesJournal of Clinical Periodontology, 1997
- Rationale of mechanical plaque controlJournal of Clinical Periodontology, 1996
- An evaluation of the Nd:YAG laser in periodontal pocket therapyBritish Dental Journal, 1996
- Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfacesLasers in Surgery and Medicine, 1996
- Effect of the dynamic optical properties of water on midinfrared laser ablationLasers in Surgery and Medicine, 1994
- The role of inflammatory mediators in the pathogenesis of periodontal diseaseJournal of Periodontal Research, 1991
- Temperature response of biological materials to pulsed non‐ablative CO2 laser irradiationLasers in Surgery and Medicine, 1991
- The effects of the carbon dioxide surgical laser on oral tissuesBritish Journal of Oral and Maxillofacial Surgery, 1984