Reciprocal Power Sums of Differences of Zeros of Special Functions
- 1 March 1983
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 14 (2) , 372-382
- https://doi.org/10.1137/0514028
Abstract
We derive formulas for sums of the form \[ \sum_{\begin{subarray}{l} k - 1 \\ k \ne j \end{subarray}} ^\infty {\left( {z_j - z_k } \right)^{ - m} } \quad (m,j = 1,2,3, \cdots ),\] where $\{ z_k \} $ is the (finite or infinite) sequence of (complex) zeros of an appropriate solution of a second order linear differential equation. In special cases our results reduce to some of those obtained by T. J. Stieltjes, F. Calogero, S. Ahmed, M. L. Mehta, K. M. Case and others.
Keywords
This publication has 17 references indexed in Scilit:
- On the zeros of confluent hypergeometric functionsLettere al Nuovo Cimento (1971-1985), 1980
- Sum rules for zeros of polynomials. IIJournal of Mathematical Physics, 1980
- On the zeros of conflent hypergeometric functionsLettere al Nuovo Cimento (1971-1985), 1979
- On the zeros of confluent hypergeometric functionsLettere al Nuovo Cimento (1971-1985), 1979
- Asymptotic behaviour of the zeros of the Jacobi polynomialsP n at,bt (x) as t→∞ and limit relations of these polynomials with Hermite polynomialsLettere al Nuovo Cimento (1971-1985), 1978
- Systems of nonlinear equations for the zeros of Hermite polynomialsLettere al Nuovo Cimento (1971-1985), 1978
- On the zeros of Bessel functions. - IVLettere al Nuovo Cimento (1971-1985), 1978
- On the zeros of Bessel functions.- IIILettere al Nuovo Cimento (1971-1985), 1978
- Sur les racines de l'équation Xn=0Acta Mathematica, 1887
- Sur certains polynômes: Qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de LaméActa Mathematica, 1885