Human Pancreatic Ductal Cells: Large-Scale Isolation and Expansion
Open Access
- 1 January 2001
- journal article
- research article
- Published by SAGE Publications in Cell Transplantation
- Vol. 10 (1) , 109-121
- https://doi.org/10.3727/000000001783987016
Abstract
The in vitro differentiation of pancreatic stem cells has recently been shown to represent a new source of β cells for cell therapy in diabetes. Human ductal cell differentiation, in vitro, has been documented in three-dimensional (3D) culture and recently substantiated. Although encouraging, the optimization of the ductal cell source, expansion and differentiation ex vivo are mandatory for clinical relevance. We compared three sources of human ductal cells (hDC) (method A1-2, B, and C). The classical main duct isolation of hDC by explant (A1), or enzymatic digestion (A2), was compared with two indirect methods: from 3D cultured human islet/duct-enriched fractions (B) and dedifferentiated exocrine fractions (C). Method A: few viable hDC were obtained from the main duct. Method B: embedding islet/duct rich fraction in 3D collagen gels expands the cytokeratin 19 (CK19)-positive ductal component in the form of ductal cysts, as we described previously; monolayers derived from digested cysts were 80% ductal (CK19). Method C: initially adherent amylase-positive exocrine clusters contained 12% (CK19) to 22% (CK7) ductal cells. One-week exocrine cultures were amylase negative and 46% (CK19) to 63% (CK7) ductal. Cell viability varied: <20% (A1), 81 ± 12% (B), 91 ± 2% (C). Extrapolating total yields we obtained (±SEM): 10.5 ± 4.6 × 103 (A1), 36 ± 18 × 103 (A2), 292 ± 50 × 106 (B), 1696 ± 526 × 106 (C) viable hDC per pancreas. A secondary monolayer expansion of cyst-derived hDC (method B) was achieved with NuSerum® (4.2-fold on plastic, 2.6-fold on 804G matrix; p < 0.05 vs. control cells on plastic). First passage exocrine-derived ductal cells also responded to matrix and to growth factors, albeit not significantly. In conclusion, this study demonstrated that an abundant hDC supply can be obtained from islet/duct or exocrine fractions followed by monolayer expansion with NuSerum. If their differentiation capacity is confirmed, in particular exocrine-derived ductal cells may represent a promising abundant source of islets for allogenic and autologous diabetes cell therapy.Keywords
This publication has 38 references indexed in Scilit:
- Increasing the Transfection Efficacy and Subsequent Long-Term Culture of Resting Human Pancreatic Duct Epithelial CellsPancreas, 1998
- Cytokeratins and cell differentiation in the pancreasThe Journal of Pathology, 1998
- Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix cultureDifferentiation, 1996
- Insulin, transforming growth factors, and substrates modulate growth of guinea pig pancreatic duct cells in vitroGastroenterology, 1995
- Isolation and Culture of Rhesus Monkey Pancreatic Ductules and Ductule-like EpitheliumPancreas, 1994
- Retrodifferentiation and Cell DeathCritical Reviews™ in Oncogenesis, 1994
- Isolation, Culture, and Characterization of Human Pancreatic Duct CellsPancreas, 1993
- Stimulation of DNA Synthesis in Pancreatic Duct Cells by Gastrointestinal HormonesPancreas, 1992
- Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreasThe Journal of Pathology, 1992
- Rat Pancreatic Duct Epithelium Cultured on a Porous Support Coated with Extracellular MatrixPancreas, 1991