Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates

Abstract
As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity.