Asymptotic state of the finite-Larmor-radius guiding-centre plasma

Abstract
The equilibrium properties of a two-dimensional plasma are examined theoretically, using a model where the finite-Larmor-radius corrections to the simple guiding-centre description are included. The analysis is carried out in a truncated Fourier representation of the resulting equations. This system has three ‘rugged’ quadratic invariants. A canonical-ensemble probability distribution characterized by three temperatures is derived. The resulting partition function is obtained and the equilibrium spectral energy density is calculated. The possibility of negative-temperature states leading to an inverse energy cascade is pointed out.