AVEC-DIC and electron microscopic analyses of axonally transported particles in cold-blocked squid giant axons
- 1 October 1985
- journal article
- research article
- Published by Springer Nature in Journal of Neurocytology
- Vol. 14 (5) , 689-704
- https://doi.org/10.1007/bf01170822
Abstract
Anterogradely and retrogradely transported membranous organelles were analysed separately by focally cooling axons (cold-blocking) for 2–4 h. Video-enhanced differential interference contrast light microscopy (AVEC-DIC) and dark field light microscopy showed that particles accumulated in large numbers on both the anterograde and the retrograde sides of the cold-block and that the accumulated particles resumed their transport when the preparation was rewarmed to 18 °C. The particles accumulated in files on both sides of the cold-block suggesting that particles move along linear pathways in the axoplasm. Comparisons of the results obtained by AVEC-DIC light microscopy with those obtained by electron microscopy indicate that the AVEC-DIC method is capable of detecting all of the different types of rapidly transported membranous organelles, including the smallest (35–80 nm) vesicles that move anterogradely. Electron microscopic analyses of the transported particles demonstrate that the anterogradely transported organelles are structurally distinct from those that are transported retrogradely. The anterogradely transported particles consisted of normal mitochondria and small (35–80 nm) tubulovesicular profiles. By contrast, the retrogradely transported particles were 150 nm or larger and they often contained complex membranous inclusions. The largest retrogradely transported particles appeared to be degenerating mitochondria. The results are consistent with the hypothesis that the direction of organelle movement is related to the physiological state of the organelle. That is, organelles containing newly synthesized membrane components move primarily anterogradely and organelles that contain transformed and degraded membrane components move retrogradely.Keywords
This publication has 22 references indexed in Scilit:
- Video microscopy of fast axonal transport in extruded axoplasm: A new model for study of molecular mechanismsCell Motility, 1985
- Squid Axon UltrastructurePublished by Elsevier ,1984
- Rapid transport of foreign particles microinjected into crab axonsNature, 1983
- The Neuroplasmic LatticePublished by Springer Nature ,1983
- Video‐enhanced microscopy with a computer frame memoryJournal of Microscopy, 1983
- Fast Axonal Transport in Extruded Axoplasm from Squid Giant AxonScience, 1982
- Fast Axonal Transport in Squid Giant AxonScience, 1982
- Video‐enhanced contrast, differential interference contrast (AVEC‐DIC) microscopy: A new method capable of analyzing microtubule‐related motility in the reticulopodial network of allogromia laticollarisCell Motility, 1981
- Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines.The Journal of cell biology, 1975
- The movement of optically detectable organelles in myelinated axons of Xenopus laevisThe Journal of Physiology, 1974