A Weak Lensing Survey in the Fields of z~1 Luminous Radio Sources

Abstract
In this paper we present weak lensing observations of the fields around 8 z~1 luminous radio sources. These data are searched for the lensing signatures of clusters that are either physically associated with the radio objects, or are foreground systems projected along the line of sight. The radio sources were all imaged with WFPC-2/HST providing high quality shape information on large numbers of faint galaxies around them. Statistical analysis of the coherent shear field visible in the shapes of the faint galaxies indicates that we have detected a weak lensing signal close to one of the targets, 3C336 at z=0.927, with a high level of confidence. A second, independent WFPC-2 observation of this target reinforces this detection. Our results support the earlier suggestion of weak lensing in this field by Fort et al (1996) using ground-based data. We also combined the shear distributions in the remaining 7 field to improve our sensitivity to weak shear signals from any structure typically associated with these sources. We find no detectable signal and estimate an upper limit on the maximum shear allowed by our observations. Using an N(z) estimated from lensing analyses we convert our observed lensing signal and limits into estimates of the masses of the various structures. We suggest that further lensing observations of distant radio sources and their host environments may allow the cluster L_X-mass relationship to be mapped at high-z. This is crucial for interpreting the results of the next generation of deep X-ray surveys, and thus constraining the redshift evolution of the cluster mass function out to z=1.

This publication has 0 references indexed in Scilit: