Polarization switching mechanisms and electromechanical properties of La-modified lead zirconate titanate ceramics

Abstract
The electromechanical properties of (Pb1−xLax)(ZryTi1−y)O3 [PLZT x/y/(1 - y)] have been investigated in the compositional range 0 < x < 0.10 for y = 0.65 (rhombohedral PLZT) and 0 < x < 0.18 for y = 0.40 (tetragonal PLZT). Both field-induced strains (∊-E) associated with polarization switching and piezoelectric responses (d33) were studied. Transmission electron microscopy (TEM) and dielectric investigations were also performed. Room temperature TEM investigations revealed common trends in the domain structure with increasing La content for both PLZT x/65/35 and x/40/60, including a micron-sized domain structure, a subdomain tweed-like structure, and a nanopolar domain state. Changes in the field-induced strains and piezoelectric properties were then related to these microstructural trends. The dominant electromechanical coupling mechanism in the micron-sized domain state was found to be piezoelectricity. However, an electrostrictive coupling became apparent with the appearance of the subdomain tweed-like structures, and became stronger in the nanopolar domain state. It is believed that polarization switching can-occur through 70°or 110°domains, the subdomain tweed-like structure, or nanopolar domains depending on La content.