The dependence of craze velocity on the pressure and temperature of the environmental gas

Abstract
The craze velocity was determined for poly(chlorotrifluoroethylene) (PCTFE) in CH4 and for PCTFE, polystyrene, and poly(methyl methacrylate) in N2. It was found that for temperatures near the boiling point the velocity and number of crazes depended on the relative pressure given by P exp[‐(Qv/R) (TB−1T−1)], where P is the pressure, Qv is the heat of vaporization, and TB is the boiling point. The craze velocity was related to the coverage of the adsorbed gas. For coverages corresponding to a few monolayers the logarithm of the velocity was proportional to the relative pressure. As the temperature increases from TB, the creep rate decreases because gas desorbs with increasing temperature; the creep rate attains a minimum value at a temperature where the general process of thermally activated deformation becomes dominant.

This publication has 23 references indexed in Scilit: