Broadband coherent light generation in diamond driven by femtosecond pulses

Abstract
We demonstrate broadband light generation in diamond pumped by two-color femtosecond laser pulses. We find that phase matching plays a critical role in the output angle and frequency of the generated sidebands. When a third femtosecond probe pulse is applied to the crystal in the boxed Coherent anti-Stokes Raman Scattering geometry, a two-dimensional array of multi-color beams is generated through the Raman, four-wave mixing, and six-wave-mixing processes. We test the mutual coherence between the generated sidebands. Such coherence, maintained over the broad spectrum, opens possibilities for synthesis of subfemtosecond light waveforms.