Abstract
A linear stability analysis is presented for flow between concentric cylinders when a fully developed axial flow is present. Small perturbations are assumed to be nonaxisymmetric. This leads to an eigenvalue problem with four eigenvalues: the critical Taylor number, an amplification factor and two wavenumbers. The presence of the tangential wavenumber permits prediction of the stability of spiral flow. This made it possible to model the flow more accurately and to extend the range of calculations to higher axial Reynolds numbers than had previously been attainable. Calculations were carried out for radius ratios from 0·95 to 0·1, Reynolds numbers as large as 300 and cases with co-rotation and counter-rotation of the cylinders.

This publication has 1 reference indexed in Scilit: