Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex
Open Access
- 1 December 1999
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 19 (23) , 10536-10553
- https://doi.org/10.1523/jneurosci.19-23-10536.1999
Abstract
Areas beyond the classical receptive field (CRF) can modulate responses of the majority of cells in the primary visual cortex of the cat (Walker et al., 1999). Although general characteristics of this phenomenon have been reported previously, little is known about the detailed spatial organization of the surrounds. Previous work suggests that the surrounds may be uniform regions that encircle the CRF or may be limited to the “ends” of the CRF. We have examined the spatial organization of surrounds of single-cell receptive fields in the primary visual cortex of anesthetized, paralyzed cats. The CRF was stimulated with an optimal drifting grating, whereas the surround was probed with a second small grating patch placed at discrete locations around the CRF. For most cells that exhibit suppression, the surrounds are spatially asymmetric, such that the suppression originates from a localized region. We find a variety of suppressive zone locations, but there is a slight bias for suppression to occur at the end zones of the CRF. The spatial pattern of suppression is independent of the parameters of the suppressive stimulus used, although the effect is clearest with iso-oriented surround stimuli. A subset of cells exhibit axially symmetric or uniform surround fields. These results demonstrate that the surrounds are more specific than previously realized, and this specialization has implications for the processing of visual information in the primary visual cortex. One possibility is that these localized surrounds may provide a substrate for figure–ground segmentation of visual scenes.Keywords
This publication has 73 references indexed in Scilit:
- Contrast dependence of contextual effects in primate visual cortexNature, 1997
- Visual cortical mechanisms detecting focal orientation discontinuitiesNature, 1995
- Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the MacaqueEuropean Journal of Neuroscience, 1995
- Lateral Interactions in Primary Visual Cortex: A Model Bridging Physiology and PsychophysicsScience, 1995
- Endstopped neurons in the visual cortex as a substrate for calculating curvatureNature, 1987
- End-stopped cells and binocular depth discrimination in the striate cortex of catsProceedings of the Royal Society of London. B. Biological Sciences, 1986
- Generation of end-inhibition in the visual cortex via interlaminar connectionsNature, 1986
- Periodicity of striate-cortex-cell receptive fieldsJournal of the Optical Society of America A, 1985
- Textons, the elements of texture perception, and their interactionsNature, 1981
- Decision-Time without Reaction-Time: Experiments in Visual ScanningThe American Journal of Psychology, 1963