Stratification of the space of unimodal interval maps

Abstract
The space of ‘quadratic-like’ (unimodal) maps of a compact interval to itself is shown to decompose in a ‘nice’ way (stratify) according to a dynamical property of such maps (the existence of a homoclinic periodic orbit with given period). This decomposition is refined by that discovered by Sarkovskii. Orbit structure and bifurcation properties are also discussed.

This publication has 14 references indexed in Scilit: