Variational Principles for EIastoplastic Continua∗
- 1 January 1974
- journal article
- research article
- Published by Taylor & Francis in Journal of Structural Mechanics
- Vol. 3 (4) , 345-358
- https://doi.org/10.1080/03601217408907272
Abstract
A mixed variational principle is constrained by a homogeneous yield function using a Lagrange multiplier. The Lagrange factor corresponds to the scalar factor in Prager's normality rule for the plastic strain increments. Several reduced functionals and their associated constitutive equations are derived by eliminating some variables.Keywords
This publication has 10 references indexed in Scilit:
- Zur Fließbedingung der PlastizitätstheorieArchive of Applied Mechanics, 1970
- Elasto‐plastic solutions of engineering problems ‘initial stress’, finite element approachInternational Journal for Numerical Methods in Engineering, 1969
- Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element methodInternational Journal of Mechanical Sciences, 1968
- Zur Fließgrenze bei allgemeiner VerfestigungZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1968
- Bending of circular plates of hardening materialInternational Journal of Solids and Structures, 1967
- The Theory of Plasticity: A Survey of Recent AchievementsProceedings of the Institution of Mechanical Engineers, 1955
- Theorie ideal plastischer KörperPublished by Springer Nature ,1954
- On a Variational Theorem in ElasticityJournal of Mathematics and Physics, 1950
- Recent Developments in the Mathematical Theory of PlasticityJournal of Applied Physics, 1949
- Berücksichtigung der elastischen Formänderung in der PlastizitätstheorieZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1930