Abstract
Let $\mu^n$ be the distribution of a product of $n$ independent identically distributed random matrices. We study tightness and convergence of the sequence $\{\mu^n, n \geq 1\}$. We apply this to linear stochastic differential (and difference) equations, characterize the stability in probability, in the sense of Hashminski, of the zero solution, and find all their stationary solutions.

This publication has 0 references indexed in Scilit: