Microwave-induced acoustic imaging of biological tissues

Abstract
We present tomographic imaging of biological tissues by use of microwave-induced acoustic signal. It was demonstrated that the acoustic signal was proportional to the intensity of the incident microwave and was related to the absorption property of microwave in the medium. Pulsed microwave radiation was used to illuminate the samples. Absorbed microwave energy caused thermoelastic expansion that radiated acoustic waves. A focused ultrasonic transducer detected the time-resolved acoustic signals. Each acoustic signal was converted into a one-dimensional image. A linear scanning of the ultrasonic transducer yielded multiple one-dimensional images, which formed a two-dimensional image. The imaging contrast is based on the difference in the dielectric constants among biological tissues. Because of the large contrast in microwave absorption among different tissue types, microwave-induced acoustic tomography could potentially provide a new modality for detecting early-stage cancers.